
Data Protection for Kubernetes
Application-aware Backups with Bareos
Heike Jurzik, Andreas Rogge

Data Protection for Kubernetes
Application-aware Backups with Bareos

Heike Jurzik, Andreas Rogge
Bareos GmbH & Co. KG

September 29, 2022

T his technical whitepaper shows how toback up stateful Kubernetes (K8s) ap-plications with Bareos. The Bareos FileDaemon (FD), i.e. the client, runs as side-car container alongside a main container,where the actual application is deployed to.The File Daemon is configured for client-initiated connections only, to back up theapplication’s data.

Contents

1 Introduction 2
2 Stateful Applications in K8s 22.1 Sidecar Containers 3
3 Bareos Client in a K8s Pod 33.1 Creating the Sidecar Image 33.2 Deploying the Image to K8s 43.3 Configuring the Bareos Director . 4
4 Conclusion 5
5 About Bareos 5
6 About Kubernetes 5

1 Introduction

Continuously, companies and organizationsdrive and transform enterprise application de-livery. Some have moved their applications tocontainers, others have transformed existing ap-plications into microservices or developed new,cloud-native applications.

When it comes to data protection and back-ups, those containerized apps are not that dif-ferent from traditional applications running onvirtual machines or bare metal: the backup solu-tion should consider both an application’s stateand its data.
This whitepaper introduces a backup conceptfor Kubernetes deployments, creating file-basedbackups of applications running in multiple con-tainers and pods. It makes use of Bareos’ fea-ture for client-initiated backups and offers thefollowing benefits:
• Protection of business-critical containerizedapplications
• Quick restore and easy re-deployment ofapplication data
• Flexible approach, easy to migrate withinand across the cloud
• Consistent backup concept with certifiedOpen Source software

2 Stateful Applications in K8s

A typical Kubernetes setup includes many com-ponents, for example, containers, pods, services,certificates, secrets, etc. While there are backupconcepts available which handle the Kubernetesobjects and their configuration itself, this pa-per offers a different approach: an application-aware backup secures the current state of ap-plications at the time of the backup. This caninclude data in memory and also pending trans-actions.

Bareos and Kubernetes Bareos GmbH & Co. KG

In our example setup1, we have deployed atypical WordPress blog with a MySQL databaseto Kubernetes. The blog software runs in onecontainer, the database backend in another one.To make it even more interesting, those two con-tainers belong to different pods.The goal is to create a file-based backup ofthe WordPress installation as well as a logicalbackup of the database. The challenge: it’s aclosed setup and the two pods and their con-tainers can’t be accessed from the outside. Thesolution: Bareos supports client-initiated con-nections, so the File Daemon runs as a sidecarcontainer, using the same settings as WordPressfor accessing the MySQL database.

2.1 Sidecar Containers

In Kubernetes, a pod is a group of one or morecontainers. A sidecar container is a utility con-tainer in a pod which is linked to a main con-tainer. As a result, the sidecar and the primaryapplication container share their resources, forexample, the pod storage and network inter-faces. Containers in the same pod can also sharethe storage volumes.Sidecar containers are mainly used to extendthe main containers’ functionality—without hav-ing to change their codebase. In our examplesetup, the pod with the WordPress installationhas a sidecar container which runs the BareosFile Daemon. The sidecar has access to the samepersistent volume as the WordPress container.Thus, it can back up and restore the volume’scontents. Additionally, the sidecar container in-cludes the MySQL credentials, so it can back upand restore the database.

3 Bareos Client in a K8s Pod

Basically, three steps are required to implementthe application-aware backup with Bareos:
1. Build a container image which runs theBareos File Daemon and the MySQL client.2. Deploy the sidecar image to Kubernetes.3. Configure the Bareos Director and set upthe new client.
1https://github.com/bareos/kube-bareos

3.1 Creating the Sidecar Image

First, we’re going to build a container imagewhich runs the Bareos File Daemon and theMySQL client. The image can be customizedusing environment variables at deploymenttime. The directory container-image2 in ourGitHub repository contains a Docker file for theinitial setup:

FROM docker.io/almalinux:8
RUN curl -o /etc/yum.repos.d/bareos.\
repo -O https://download.bareos.org\
/bareos/release/21/EL_8/bareos.repo\
&& dnf install -y \
bareos-filedaemon \
mysql \

&& dnf clean all
COPY *.* /
ENTRYPOINT ["/entrypoint.sh"]
CMD ["-f"]

It creates an image based on Alma Linuxwhich runs the Bareos File Daemon as wellas the MySQL client. The entrypoint.shscript reads a Bareos configuration template(bareos-fd.conf.in) and a MySQL template(mysql-defaults.cnf.in) and replaces a fewvariables when deploying the container to Ku-bernetes. This is necessary, because you haveto configure the MySQL client and the File Dae-mon somehow—logging into the container andadjusting the settings in a text editor is not pos-sible.Basically, the Bareos FD needs these 4 set-tings:
1. Name of the Bareos Director2. Password of the Bareos Director3. Address of the Bareos Director4. Name of the File Daemon (the client)
For the MySQL client, the template sets thedatabase backend’s hostname, the usernameand the password.Strictly speaking, for our example setup thescript is a little exaggerated. It explains howto automate things, though: assuming you are
2https://github.com/bareos/kube-bareos/tree/

master/container-image

Page 3 of 5

https://github.com/bareos/kube-bareos
https://github.com/bareos/kube-bareos/tree/master/container-image
https://github.com/bareos/kube-bareos/tree/master/container-image

Bareos and Kubernetes Bareos GmbH & Co. KG

running 10, 20, or more WordPress installationsin Kubernetes, then you would have to configure10, 20, or more different File Daemons manually.Automating the setup process with a script likethis is a lot faster and more efficient as well asless prone to errors.
3.2 Deploying the Image to K8s

Next, the application with its sidecar image isdeployed to Kubernetes. In our GitHub reposi-tory, the k8s directory offers some Kubernetes
kustomization files (in YAML format) that youcan adjust to your own environment:

• kustomization.yaml: Set the password forthe MySQL client and the Bareos Director,include other resources.
• wordpress.yaml: Specify the WordPresscontainer, i.e. the container image, theFD’s name and the address of the BareosDirector as well as its password (de-fined in kustomization.yaml). Also setthe database host and its credentials.
volumeMounts specifies the document root(/var/www/html) which is used in the Word-Press container; the backup container usesthe same directory.

• mysql.yaml: Configure the MySQL con-tainer, for example, the image name,the MySQL credentials (defined in
kustomization.yaml), the persistentvolume (database in /var/lib/mysql), etc.

• ingress.yaml: The Ingress resource; Ku-bernetes Ingress is an API object that pro-vides routing rules to manage externalusers’ access to the services in a Kubernetescluster, typically via HTTPS/HTTP.3
After you have deployed the application, thelast step is to configure the Bareos Director toset up the new client, the FileSet and the backupjob itself.

3.3 Configuring the Bareos Director

In order to set up the new File Daemon for yourBareos installation, you need three configura-tion files.4 The wordpress-fd.conf file contains
3https://kubernetes.io/docs/concepts/

services-networking/ingress/4https://github.com/bareos/kube-bareos/tree/
master/bareos-dir.d

the client configuration and enables the client-initiated connection.Using this feature (which has been availablesince Bareos 16.2.2), the Bareos Director doesn’thave to know how to access the pod with theWordPress and the sidecar containers. If thepod starts, the file daemon will contact theBareos Director itself:

Client {
Name = wordpress-fd
Password = "BareosFDPassword"

configure client-initiated \
connections only:

Connection From Client To \
Director = yes

Connection From Director \
To Client = no

address is required, but \
will not be used

Address = localhost
}

The FileSet resource wordpress-set.confcontains the document root for the WordPressinstallation and calls the Bareos bpipe plugin5to stream the database dump to Bareos forbackup:

FileSet {
Name = "wordpress-set"
Include {

Options {
Signature = MD5

}
File = /var/www/html
Plugin = "bpipe:file=/MYSQL/\

all.sql:reader=mysqldump \
--all-databases:writer=mysql"

}
}

5https://docs.bareos.org/TasksAndConcepts/
Plugins.html#bpipe-plugin

Page 4 of 5

https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://github.com/bareos/kube-bareos/tree/master/bareos-dir.d
https://github.com/bareos/kube-bareos/tree/master/bareos-dir.d
https://docs.bareos.org/TasksAndConcepts/Plugins.html#bpipe-plugin
https://docs.bareos.org/TasksAndConcepts/Plugins.html#bpipe-plugin

Bareos and Kubernetes Bareos GmbH & Co. KG

The actual backup job is defined in the file
wordpress.conf:

Job {
Name = "wordpress"
JobDefs = "DefaultJob"
FileSet = "wordpress-set"
Client = "wordpress-fd"

}

Reload the Bareos configuration and checkwith the bconsole command status scheduleif the new backup job appears in the schedule.The scheduler itself gets updated every minute.Your WordPress instance and its associateddatabase will now be backed up according tothe schedule you define (here: schedule for the
DefaultJob JobDefs Resource).

4 Conclusion

When it comes to creating file-based backups,containerized apps are not that different fromtraditional applications running on virtual ma-chines or bare metal. The backup softwareshould be able to handle the application’s stateand its data. Following the application-awareapproach, this paper offers a concept to backup Kubernetes applications running in multiplecontainers and pods: a stateful WordPress ap-plication with two persistence backends, i.e. thefilesystem and the database backend.During the restore process both the files aswell as the database (to be more precise: itscurrent state!) have to be restored. Even if theentire Kubernetes cluster drops out, it’s easyto restore the setup with this approach: afterdeploying all applications to Kubernetes, Bareosis able to restore the WordPress files and theMySQL database—this takes only a few minutes.

5 About Bareos

Bareos6 (Backup Archiving Recovery OpenSourced) is a cross-network open source backupsolution which preserves, archives, and recov-ers data from all major operating systems. TheBareos project started in 2010 and is being de-veloped under the AGPLv3 license. The com-pany Bareos GmbH & Co. KG and their partnersoffer professional subscription and support ser-vices, so that customers can rely on amaintainedbackup environment.Worldwide, organizations across almost allsectors use Bareos. Customers include publicauthorities and government departments, smalland medium-sized enterprises as well as com-panies listed on the DAX and Fortune 500, e.g.telecommunications, cloud and internet serviceproviders, the media, education, energy, finance,automotive and aerospace industries.

6 About Kubernetes

Kubernetes7 is a portable, extensible, opensource platform for managing containerizedworkloads and services, that facilitates bothdeclarative configuration and automation. It hasa large, rapidly growing ecosystem. Kubernetesservices, support, and tools are widely available.The name Kubernetes originates from Greek,meaning "helmsman" or "pilot". K8s as an ab-breviation results from counting the eight lettersbetween the K and the s. Google open-sourcedthe Kubernetes project in 2014. Kubernetes com-bines over 15 years of Google’s experience run-ning production workloads at scale with best-of-breed ideas and practices from the community.

6https://www.bareos.com/7https://kubernetes.io/

Page 5 of 5

https://www.bareos.com/
https://kubernetes.io/

	Introduction
	Stateful Applications in K8s
	Sidecar Containers

	Bareos Client in a K8s Pod
	Creating the Sidecar Image
	Deploying the Image to K8s
	Configuring the Bareos Director

	Conclusion
	About Bareos
	About Kubernetes

